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The effect of large-scale anti-contagion 
policies on the COVID-19 pandemic

Solomon Hsiang1,2 ✉, Daniel Allen1, Sébastien Annan-Phan1,3, Kendon Bell1,4, Ian Bolliger1,5, 
Trinetta Chong1, Hannah Druckenmiller1,3, Luna Yue Huang1,3, Andrew Hultgren1,3,  
Emma Krasovich1, Peiley Lau1,3, Jaecheol Lee1,3, Esther Rolf1,6, Jeanette Tseng1 & Tiffany Wu1

Governments around the world are responding to the novel coronavirus (COVID-19) 
pandemic1 with unprecedented policies designed to slow the growth rate of 
infections. Many actions, such as closing schools and restricting populations to their 
homes, impose large and visible costs on society, but their benefits cannot be directly 
observed and are currently understood only through process-based simulations2–4. 
Here, we compile new data on 1,717 local, regional, and national non-pharmaceutical 
interventions deployed in the ongoing pandemic across localities in China, South 
Korea, Italy, Iran, France, and the United States (US). We then apply reduced-form 
econometric methods, commonly used to measure the effect of policies on economic 
growth5,6, to empirically evaluate the effect that these anti-contagion policies have 
had on the growth rate of infections. In the absence of policy actions, we estimate that 
early infections of COVID-19 exhibit exponential growth rates of roughly 38% per day. 
We find that anti-contagion policies have significantly and substantially slowed this 
growth. Some policies have different impacts on different populations, but we obtain 
consistent evidence that the policy packages now deployed are achieving large, 
beneficial, and measurable health outcomes. We estimate that across these six 
countries, interventions prevented or delayed on the order of 62 million confirmed 
cases, corresponding to averting roughly 530 million total infections. These findings 
may help inform whether or when these policies should be deployed, intensified, or 
lifted, and they can support decision-making in the other 180+ countries where 
COVID-19 has been reported7.

The COVID-19 pandemic is forcing societies worldwide to make con-
sequential policy decisions with limited information. After contain-
ment of the initial outbreak failed, attention turned to implementing 
non-pharmaceutical interventions designed to slow contagion of the 
virus. In general, these policies aim to decrease virus transmission 
by reducing contact among individuals within or between popula-
tions, such as by closing restaurants or restricting travel, thereby slow-
ing the spread of COVID-19 to a manageable rate. These large-scale 
anti-contagion policies are informed by epidemiological simula-
tions2,4,8,9 and a small number of natural experiments in past epidem-
ics10. However, the actual effects of these policies on infection rates in 
the ongoing pandemic are unknown. Because the modern world has 
never confronted this pathogen, nor deployed anti-contagion poli-
cies of such scale and scope, it is crucial that direct measurements of 
policy impacts be used alongside numerical simulations in current 
decision-making.

Societies around the world are weighing whether the health benefits 
of anti-contagion policies are worth their social and economic costs. 
Many of these costs are plainly seen; for example, business restrictions 

increase unemployment and school closures impact educational out-
comes. It is therefore not surprising that some populations have hesi-
tated before implementing such dramatic policies, especially when 
their costs are visible while their health benefits – infections and deaths 
that would have occurred but instead were avoided or delayed – are 
unseen. Our objective is to measure the direct health benefits of these 
policies; specifically, how much these policies slowed the growth rate of 
infections. To do this, we compare the growth rate of infections within 
hundreds of sub-national regions before and after each of these policies 
is implemented locally. Intuitively, each administrative unit observed 
just prior to a policy deployment serves as the “control” for the same 
unit in the days after it receives a policy “treatment” (see Supplemen-
tary Information for accounts of these deployments). Our hope is to 
learn from the recent experience of six countries where early spread 
of the virus triggered large-scale policy actions, in part so that socie-
ties and decision-makers in the remaining 180+ countries can access 
this information.

Here we directly estimate the effects of 1,717 local, regional, and 
national policies on the growth rate of infections across localities within 

https://doi.org/10.1038/s41586-020-2404-8

Received: 22 March 2020

Accepted: 26 May 2020

Published online: 8 June 2020

1Global Policy Laboratory, Goldman School of Public Policy, UC Berkeley, Berkeley, USA. 2National Bureau of Economic Research & Centre for Economic Policy Research, Cambridge, 
Massachusetts, United States. 3Agricultural & Resource Economics, UC Berkeley, Berkeley, USA. 4Manaaki Whenua – Landcare Research, Lincoln, New Zealand. 5Energy & Resources Group, UC 
Berkeley, Berkeley, USA. 6Electrical Engineering & Computer Science Department, UC Berkeley, Berkeley, USA. ✉e-mail: shsiang@berkeley.edu

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-020-2404-8
mailto:shsiang@berkeley.edu


2 | Nature | www.nature.com

Article
China, France, Iran, Italy, South Korea, and the US (see Figure 1 and Sup-
plementary Table 1). We compile subnational data on daily infection 
rates, changes in case definitions, and the timing of policy deployments, 
including (1) travel restrictions, (2) social distancing through cancella-
tions of events and suspensions of educational/commercial/religious 
activities, (3) quarantines and lockdowns, and (4) additional policies 
such as emergency declarations and expansions of paid sick leave, from 
the earliest available dates to April 6, 2020 (see Supplementary Notes, 
also Extended Data Fig. 1). During this period, populations remained 
almost entirely susceptible to COVID-19, causing the natural spread of 
infections to exhibit almost perfect exponential growth11,12. The rate 
of this exponential growth could change daily, determined by epide-
miological factors, such as disease infectivity, as well as policies that 
alter behavior9,11,13. Because policies were deployed while the epidemic 
unfolded, we can estimate their effects empirically. We examine how 
the daily growth rate of infections in each locality changes in response 
to the collection of ongoing policies applied to that locality on that day.

Methods Summary
We employ well-established “reduced-form” econometric techniques5,14 
commonly used to measure the effects of events6,15 on economic growth 
rates. Similar to early COVID-19 infections, economic output generally 
increases exponentially with a variable rate that can be affected by 
policies and other conditions. Here, this technique aims to measure 
the total magnitude of the effect of changes in policy, without requir-
ing explicit prior information about fundamental epidemiological 
parameters or mechanisms, many of which remain uncertain in the 
current pandemic. Rather, the collective influence of these factors is 
empirically recovered from the data without modeling their individual 
effects explicitly (see Methods). Prior work on influenza16, for example, 
has shown that such statistical approaches can provide important 
complementary information to process-based models.

To construct the dependent variable, we transform location-specific, 
subnational time-series data on infections into first-differences of 
their natural logarithm, which is the per-day growth rate of infections 
(see Methods). We use data from first- or second-level administra-
tive units and data on active or cumulative cases, depending on avail-
ability (see Supplementary Information). We employ widely-used 
panel regression models5,14 to estimate how the daily growth rate of 
infections changes over time within a location when different combi-
nations of large-scale policies are enacted (see Methods). Our econo-
metric approach accounts for differences in the baseline growth rate 
of infections across subnational locations, which may be affected by 
time-invariant characteristics, such as demographics, socio-economic 
status, culture, and health systems; it accounts for systematic patterns 
in growth rates within countries unrelated to policy, such as the effect 
of the work-week; it is robust to systematic under-surveillance specific 
to each subnational unit; and it accounts for changes in procedures to 
diagnose positive cases (see Methods and Supplementary Information).

Results
We estimate that in the absence of policy, early infection rates of 
COVID-19 grow 43% per day on average across these six countries 
(Standard Error [SE] = 5%), implying a doubling time of approximately 
2 days. Country-specific estimates range from 34% per day in the US  
(SE = 7%) to 68% per day in Iran (SE = 9%). We cannot determine if the 
high estimate for Iran results from true epidemiological differences, 
data quality issues (see Methods), the concurrence of the initial out-
break with a major religious holiday and pilgrimage (see Supplementary 
Notes), or sampling variability. Excluding Iran, the average growth rate 
is 38% per day (SE = 5%). Growth rates in all five other countries are 
independently estimated to be very near this value (Figure 2a). These 
estimated values differ from observed average growth rates because 

the latter are confounded by the effects of policy. These growth rates 
are not driven by the expansion of testing or increasing rates of case 
detection (see Methods and Extended Data Fig. 2) nor by data from 
individual regions (Extended Data Fig. 3).

Some prior analyses of pre-intervention infections in Wuhan suggest 
slower growth rates (doubling every 5–7 days)17,18 using data collected 
before national standards for diagnosis and case definitions were first 
issued by the Chinese government on January 15, 202019. However, case 
data in Wuhan from before this date contain multiple irregularities: 
the cumulative case count decreased on January 9; no new cases were 
reported during January 9-15; and there were concerns that informa-
tion about the outbreak was suppressed20 (see Supplementary Table 2). 
When we remove these problematic data, utilizing a shorter but more 
reliable pre-intervention time series from Wuhan ( January 16–21), we 
recover a growth rate of 43% per day (SE = 3%), doubling every 2 days) 
consistent with results from all other countries except Iran (Figure 2a, 
Supplementary Table 3).During the early stages of an epidemic, a large 
proportion of the population remains susceptible to the virus, and if the 
spread of the virus is left uninhibited by policy or behavioral change, 
exponential growth continues until the fraction of the susceptible 
population declines meaningfully11,13,21,22. After correcting for estimated 
rates of case-detection23, we compute that the minimum susceptible 
fraction across administrative units in our sample is 72% of the total 
population (Cremona, Italy) and 87% of units would likely be in a regime 
of uninhibited exponential growth (> 95% susceptible) if policies were 
removed on the last date of our sample.

Consistent with predictions from epidemiological models2,10,24, we 
find that the combined effect of policies within each country reduces 
the growth rate of infections by a substantial and statistically significant 
amount (Figure 2b, Supplementary Table 3). For example, a locality in 
France with a baseline growth rate of 0.33 (national average) that fully 
deployed all policy actions used in France would be expected to lower 
its daily growth rate by −0.17 to a growth rate of 0.16. In general, the 
estimated total effects of policy packages are large enough that they 
can in principle offset a large fraction of, or even eliminate, the baseline 
growth rate of infections—although in several countries, many locali-
ties have not deployed the full set of policies. Overall, the estimated 
effects of all policies combined are generally insensitive to withholding 
regional (i.e. state- or province-level) blocks of data from the sample 
(Extended Data Fig. 3).

In China, only three policies were enacted across 116 cities early in 
a seven week period, providing us with sufficient data to empirically 
estimate how the effects of these policies evolved over time without 
making assumptions about the timing of these effects (see Methods 
and Fig. 2b). We estimate that the combined effect of these policies 
reduced the growth rate of infections by − 0.026 (SE = 0.046) in the 
first week following their deployment, increasing substantially in the 
second week to − 0.20 (SE = 0.049), and essentially stabilizing in the 
third week near − 0.28 (SE = 0.047). In other countries, we lack sufficient 
data to estimate these temporal dynamics explicitly and only report 
the average pooled effect of policies across all days following their 
deployment (see Methods). If other countries have transient responses 
similar to China, we would expect effects in the first week following 
deployment to be smaller in magnitude than the average effect we 
report. In Extended Data Fig. 5a and Supplementary Methods Sec-
tion 3, we explore how our estimates would change if we impose the 
assumption that policies cannot affect infection growth rates until 
after a fixed number of days; however, we do not find evidence this 
improves model fit.

The estimates above (Figure 2b) capture the superposition of all poli-
cies deployed in each country, i.e., they represent the average effect of 
policies that we would expect to observe if all policies enacted anywhere 
in each country were implemented simultaneously in a single region 
of that country. We also estimate the effects of individual policies or 
clusters of policies (Figure 2c) that are grouped based on either their 
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similarity in goal (e.g., library and museum closures) or timing (e.g., 
policies deployed simultaneously). Our estimates for these individual 
effects tend to be statistically noisier than the estimates for all poli-
cies combined. Some estimates for the same policy differ between 
countries, perhaps because policies are not implemented identically 
or because populations behave differently. Nonetheless, 22 out of 29 
point estimates indicate that individual policies are likely contributing 
to reducing the growth rate of infections. Seven policies (one in South 
Korea, two in Italy, and four in the US) have point estimates that are 
positive, six of which are small in magnitude (< 0.1) and not statisti-
cally different from zero (5% level). Consistent with greater overall 
uncertainty in these dis-aggregated estimates, some in China, South 
Korea, Italy, and France are somewhat more sensitive to withholding 
regional blocks of data (Extended Data Fig. 4), but remain broadly 
robust to assuming a constant delayed effect of all policies (Extended 
Data Fig. 5b).

Based on these results, we find that the deployment of anti-contagion 
policies in all six countries significantly and substantially slowed the 
pandemic. We combine the estimates above with our data on the timing 
of the 1,717 policy deployments to estimate the total effect of all poli-
cies across the dates in our sample. To do this, we use our estimates to 
predict the growth rate of infections in each locality on each day, given 
the actual policies in effect at that location on that date (Figure 3, blue 
markers). We then use the same model to predict what counterfactual 
growth rates would be on that date if the effects of all policies were 
removed (Figure 3, red markers), which we call the “no-policy scenario.” 
The difference between these two predictions is our estimated effect 
that all deployed policies had on the growth rate of infections. During 
our sample, we estimate that all policies combined slowed the average 
growth rate of infections by −0.252 per day (SE = 0.045, p < 0.001) in 
China, − 0.248 (SE = 0.089, p < 0.01) in South Korea, −0.24 (SE = 0.068,  
p < 0.001) in Italy, −0.355 (SE = 0.063, p < 0.001) in Iran, −0.123 (SE = 0.019,  
p < 0.001) in France and −0.084 (SE = 0.03, p < 0.01) in the US. These 
results are robust to modeling the effects of policies without grouping 
them (Extended Data Fig. 6a and Supplementary Table 4) or assuming 
a delayed effect of policy on infection growth rates (Supplementary 
Table 5).

The number of COVID-19 infections on a date depends on the growth 
rate of infections on all prior days. Thus, persistent reductions in growth 
rates have a compounding effect on infections, until growth is slowed 
by a shrinking susceptible population. To provide a sense of scale for 
our results, we integrate the growth rate of infections in each local-
ity from Figure 3 to estimate cumulative infections, both with actual 
anti-contagion policies and in the no-policy counterfactual scenario. To 
account for the declining susceptible population in each administrative 
unit, we couple our econometric estimates of the effects of policies 
with a Susceptible-Infected-Removed (SIR) model11,13 that adjusts the 
susceptible population in each administrative unit based on estimated 
case-detection rates23,25 (see Methods). This allows us to extend our 
projections beyond the initial exponential growth phase of infections, 
a threshold that many localities cross in our no-policy scenario.

Our results suggest that ongoing anti-contagion policies have already 
substantially reduced the number of COVID-19 infections observed 
in the world today (Figure 4). Our central estimates suggest that 
there would be roughly 37 million more cumulative confirmed cases 
(corresponding to 285 million more total infections, including the  
confirmed cases) in China, 11.5 million more confirmed cases in South Korea  
(38 million total infections), 2.1 million more confirmed cases in Italy 
(49 million total infections), 5 million more confirmed cases in Iran  
(54 million total infections), 1.4 million more confirmed cases in France 
(45 million total infections), and 4.8 million more confirmed cases  
(60 million total infections) in the US had these countries never enacted 
any anti-contagion policies since the start of the pandemic. The magni-
tudes of these impacts partially reflect the timing, intensity, and extent 
of policy deployment (e.g., how many localities deployed policies), 

and the duration for which they have been applied. Several of these 
estimates are subject to large statistical uncertainties (see intervals in 
Figure 4). Sensitivity tests (Extended Data Fig. 7) that assume a range 
of plausible alternative parameter values relating to disease dynam-
ics, such as incorporating a Susceptible-Exposed-Infected-Removed 
(SEIR) model, suggest that interventions may have reduced the sever-
ity of the outbreak by a total of 55–66 million confirmed cases over 
the dates in our sample (central estimates). Sensitivity tests varying 
the assumed infection-fatality ratio (Supplementary Table 6) suggest 
a corresponding range of 46–77 million confirmed cases (490–580 
million total infections).

Discussion
Our empirical results indicate that large-scale anti-contagion policies 
are slowing the COVID-19 pandemic. Because infection rates in the 
countries we study would have initially followed rapid exponential 
growth had no policies been applied, our results suggest that these 
policies have provided large health benefits. For example, we estimate 
that there would be roughly 465 × the observed number of confirmed 
cases in China, 17 × in Italy, and 14 × in the US by the end of our sample 
if large-scale anti-contagion policies had not been deployed. Consist-
ent with process-based simulations of COVID-19 infections2,4,8,9,22,26, 
our analysis of existing policies indicates that seemingly small delays 
in policy deployment likely produced dramatically different health 
outcomes.

While the limitations of available data pose challenges to our analysis, 
our aim is to use what data exist to estimate the first-order impacts of 
unprecedented policy actions in an ongoing global crisis. As more data 
become available, related findings will become more precise and may 
capture more complex interactions. Furthermore, this analysis does 
not account for interactions between populations in nearby localities13, 
nor mobility networks3,4,8,9. Nonetheless, we hope these results can sup-
port critical decision-making, both in the countries we study and in the 
other 180 + countries where COVID-19 infections have been reported7.

A key advantage of our reduced-form “top down” statistical approach 
is that it captures the real-world behavior of affected populations 
without requiring that we explicitly model underlying mechanisms 
and processes. This is useful in the current pandemic where many 
process-related parameters remain uncertain. However, our results 
cannot and should not be interpreted as a substitute for “bottom up” 
process-based epidemiological models specifically designed to provide 
guidance in public health crises. Rather, our results complement exist-
ing models, for example, by helping to calibrate key model parameters. 
We believe both forward-looking simulations and backward-looking 
empirical evaluations should be used to inform decision-making.

Our analysis measures changes in local infection growth rates asso-
ciated with changes in anti-contagion policies. A necessary condition 
for this association to be interpreted as the plausibly causal effect of 
these policies is that the timing of policy deployment is independent 
of infection growth rates14. This assumption is supported by estab-
lished epidemiological theory11,13,27 and evidence28,29, which indicate 
that infections in the absence of policy will grow exponentially early in 
the epidemic, implying that pre-policy infection growth rates should be 
constant over time and therefore uncorrelated with the timing of policy 
deployment. Further, scientific guidance to decision-makers early in 
the current epidemic explicitly projected constant growth rates in the 
absence of anti-contagion measures, limiting the possibility that antici-
pated changes in natural growth rates affected decision-making2,22,30,31. 
In practice, policies tended to be deployed in response to high total 
numbers of cases (e.g. in France)32, in response to outbreaks in other 
regions (e.g. in China, South Korea, and Iran)33, after delays due to 
political constraints (e.g. in the US and Italy), and often with timing 
that coincided with arbitrary events, like weekends or holidays (see Sup-
plementary Notes for detailed chronologies).
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Our analysis accounts for documented changes in COVID-19 testing 
procedures and availability, as well as differences in case-detection 
across locations; however, unobserved trends in case-detection could 
affect our results (see Methods). We analyze estimated case-detection 
trends23 (Extended Data Fig. 2), finding that this potential bias is small, 
possibly elevating our estimated no-policy growth rates by 0.022 (7%) 
on average.

It is also possible that changing public knowledge during the period 
of our study affects our results. If individuals alter behavior in response 
to new information unrelated to anti-contagion policies, such as seek-
ing out online resources, this could alter the growth rate of infections 
and thus affect our estimates. If increasing availability of informa-
tion reduces infection growth rates, it would cause us to overstate 
the effectiveness of anti-contagion policies. We note, however, that if 
public knowledge is increasing in response to policy actions, such as 
through news reports, then it should be considered a pathway through 
which policies alter infection growth, not a form of bias. Investigating 
these potential effects is beyond the scope of this analysis, but it is an 
important topic for future investigations.

Finally, our analysis focuses on confirmed infections, but other 
outcomes, such as hospitalizations or deaths, are also of policy 
interest. Future work on these outcomes may require additional 
modeling approaches because they are relatively more context- and 
state-dependent. Nonetheless, we experimentally implement our 
approach on the daily growth rate of hospitalizations in France, where 
hospitalization data is available at the granularity of this study. We find 
that the total estimated effect of anti-contagion policies on the growth 
rate of hospitalizations is similar to our estimates for infection growth 
rates (Extended Data Fig. 6c).
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Fig. 1 | Data on COVID-19 infections and large-scale anti-contagion policies. 
Left: Daily cumulative confirmed cases of COVID-19 (solid black line, left axis) 
and deaths (dashed black line) over time. Vertical lines are deployments of 
anti-contagion policies, with height indicating the number of administrative 
units instituting a policy that day (right axis). For display purposes only, ≤ 5 
policy types are shown per country and missing case data are imputed unless 
all sub-national units are missing. Right: Maps of cumulative confirmed cases 
by administrative unit on the last date of each sample.
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Fig. 2 | Empirical estimates of unmitigated COVID-19 infection growth rates 
and the effect of anti-contagion policies. Markers are country-specific 
estimates, whiskers are 95% CI. Columns report effect sizes as a change in the 
continuous-time growth rate (95% CI in parentheses) and the day-over-day 
percentage growth rate. (a) Estimates of daily COVID-19 infection growth rates 
in the absence of policy (dashed lines = averages with and without Iran, both 
excluding Wuhan-specific estimate). (b) Estimated combined effect of all 
policies on infection growth rates. (c) Estimated effects of individual policies 
or policy groups on the daily growth rate of infections, jointly estimated and 
ordered roughly chronologically within each country. *Reported effect of 
“home isolation” includes effects of other implied policies (see Methods). 
China: N = 3669; South Korea: N = 595, Italy: N = 2898, Iran: N = 548, France:  
N = 270, US: N = 1238.
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Fig. 3 | Estimated infection growth rates based on actual anti-contagion 
policies and in a “no policy” counterfactual scenario. Predicted daily 
growth rates of active (China, South Korea) or cumulative (all others) COVID-19 
infections based on the observed timing of all policy deployments within each 
country (blue) and in a scenario where no policies were deployed (red). The 
difference between these two predictions is our estimated effect of actual 
anti-contagion policies on the growth rate of infections. Small markers are 
daily estimates for sub-national administrative units (vertical lines are 95% CI). 
Large markers are national averages. Black circles are observed daily changes in 
log(infections), averaged across administrative units. Sample sizes are the same 
as Figure 2.
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Fig. 4 | Estimated cumulative confirmed COVID-19 infections with and 
without anti-contagion policies. The predicted cumulative number of 
confirmed COVID-19 infections based on actual policy deployments (blue) and 
in the no-policy counterfactual scenario (red). Shaded areas show uncertainty 
based on 1,000 simulations where empirically estimated parameters are 
resampled from their joint distribution (dark = inner 70% of predictions;  
light = inner 95%). Black dotted line is observed cumulative infections. 
Infections are not projected for administrative units that never report 
infections in the sample, but which might have experienced infections in a 
no-policy scenario.
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Methods

Data Collection and Processing
We provide a brief summary of our data collection processes here (see 
the Supplementary Notes for more details, including access dates). 
Epidemiological, case definition/testing regime, and policy data for 
each of the six countries in our sample were collected from a variety 
of in-country data sources, including government public health web-
sites, regional newspaper articles, and crowd-sourced information on 
Wikipedia. The availability of epidemiological and policy data varied 
across the six countries, and preference was given to collecting data at 
the most granular administrative unit level. The country-specific panel 
datasets are at the region level in France, the state level in the US, the 
province level in South Korea, Italy and Iran, and the city level in China. 
Due to data availability, the sample dates differ across countries: in 
China we use data from January 16 - March 5, 2020; in South Korea from 
February 17 - April 6, 2020; in Italy from February 26 - April 6, 2020; 
in Iran from February 27 - March 22, 2020; in France from February  
29 - March 25, 2020; and in the US from March 3 - April 6, 2020. Below, 
we describe our data sources.

China. We acquired epidemiological data from an open source GitHub 
project34 that scrapes time series data from Ding Xiang Yuan. We  
extended this dataset back in time to January 10, 2020 by manually  
collecting official daily statistics from the central and provincial (Hubei, 
Guangdong, and Zhejiang) Chinese government websites. We compiled 
policies by collecting data on the start dates of travel bans and lock-
downs at the city-level from the “2020 Hubei lockdowns” Wikipedia 
page35 and various other news reports. We suspect that most Chinese 
cities have implemented at least one anti-contagion policy due to their 
reported trends in infections; as such, we dropped cities where we could 
not identify a policy deployment date to avoid miscategorizing the 
policy status of these cities. Thus our results are only representative 
for the sample of 116 cities for which we obtained policy data.

South Korea. We manually collected and compiled the epidemiologi-
cal dataset in South Korea, based on provincial government reports, 
policy briefings, and news articles. We compiled policy actions from 
news articles and press releases from the Korean Centers for Disease 
Control and Prevention (KCDC), the Ministry of Foreign Affairs, and 
local governments’ websites.

Iran. We used epidemiological data from the table “New COVID-19 
cases in Iran by province”36 in the “2020 coronavirus pandemic in Iran” 
Wikipedia article, which were compiled from data provided on the Ira-
nian Ministry of Health website (in Persian). We relied on news media 
reporting and two timelines of pandemic events in Iran36,37 to collate 
policy data. From March 2-3, Iran did not report subnational cases. 
Around this period the country implemented three national policies: a 
recommendation against local travel (3/1), work from home for govern-
ment employees (3/3), and school closure (3/5). As the effects of these 
policies cannot be distinguished from each other due to the data gap, 
we group them for the purpose of this analysis.

Italy. We used epidemiological data from the GitHub repository38 main-
tained by the Italian Department of Civil Protection (Dipartimento 
della Protezione Civile). For policies, we primarily relied on the Eng-
lish version of the COVID-19 dossier “Chronology of main steps and 
legal acts taken by the Italian Government for the containment of the 
COVID-19 epidemiological emergency” written by the Dipartimento 
della Protezione Civile39, and Wikipedia40.

France. We used the region-level epidemiological dataset provided 
by France’s government website41 and supplemented it with numbers 
of confirmed cases by region on France’s public health website, which 

was previously updated daily through March 2542. We obtained data on 
France’s policy response to the COVID-19 pandemic from the French 
government website, press releases from each regional public health 
site43, and Wikipedia44.

United States. We used state-level epidemiological data from usafacts.
org45, which they compile from multiple sources. For policy responses, 
we relied on a number of sources, including the U.S. Centers for Disease 
Control (CDC), the National Governors Association, as well as various 
executive orders from county- and city-level governments, and press 
releases from media outlets.

Policy Data. Policies in administrative units were coded as binary vari-
ables, where the policy was coded as either 1 (after the date that the 
policy was implemented, and before it was removed) or 0 otherwise, 
for the affected administrative units. When a policy only affected a 
fraction of an administrative unit (e.g., half of the counties within a 
state), policy variables were weighted by the percentage of people 
within the administrative unit who were treated by the policy. We used 
the most recent population estimates we could find for countries’  
administrative units (see the Population Data section in the Appendix). 
In order to standardize policy types across countries, we mapped each 
country-specific policy to one of the broader policy category variables 
in our analysis. In this exercise, we collected 168 policies for China,  
59 for South Korea, 214 for Italy, 23 for Iran, 59 for France, and 1,194 
for the United States (see Supplementary Table 1). There are some 
cases where we encode policies that are necessarily in effect whenever 
another policy is in place, due in particular to the far-reaching implica-
tions of home isolation policies. In China, wherever home isolation is 
documented, we assume a local travel ban is enacted on the same day if 
we have not found an explicit local travel ban policy for a given locality. 
In France, we assume home isolation is accompanied by event cancella-
tions, social distancing, and no-gathering policies; in Italy, we assume 
home isolation entails no-gathering, local travel ban, work from home, 
and social distancing policies; in the US, we assume shelter-in-place 
orders indicate that non-essential business closures, work from home 
policies, and no-gathering policies are in effect. For policy types that 
are enacted multiple times at increasing degrees of intensity within a 
locality, we add weights to the variable by escalating the intensity from 
0 pre-policy in steps up to 1 for the final version of the policy (see the 
Policy Data section in the Appendix).

Epidemiological Data. We collected information on cumulative con-
firmed cases, cumulative recoveries, cumulative deaths, active cases, and 
any changes to domestic COVID-19 testing regimes, such as case defini-
tions or testing methodology. For our regression analysis (Figure 2), we 
use active cases when they are available (for China and South Korea) and 
cumulative confirmed cases otherwise. We document quality control 
steps in the Appendix. Notably, for China and South Korea we acquired 
more granular data than the data hosted on the Johns Hopkins University 
( JHU) interactive dashboard48; we confirm that the number of confirmed 
cases closely match between the two data sources (see Extended Data 
Fig. 1). To conduct the econometric analysis, we merge the epidemiologi-
cal and policy data to form a single data set for each country.

Reduced-Form Approach. The reduced-form econometric approach 
that we apply here is a “top down” approach that describes the behavior 
of aggregate outcomes y in data (here, infection rates). This approach 
can identify plausibly causal effects5,14 induced by exogenous changes in 
independent policy variables z (e.g., school closure) without explicitly 
describing all underlying mechanisms that link z to y, without observ-
ing intermediary variables x (e.g., behavior) that might link z to y, or 
without other determinants of y unrelated to z (e.g., demographics), 
denoted w. Let f(·) describe a complex and unobserved process that 
generates infection rates y:
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y f x z z x z z w w= ( ( , …, ), …, ( , …, ), , …, ) (1)K N K M1 1 1 1

Process-based epidemiological models aim to capture elements 
of f(·) explicitly, and then simulate how changes in z, x, or w affect y. 
This approach is particularly important and useful in forward-looking 
simulations where future conditions are likely to be different than 
historical conditions. However, a challenge faced by this approach is 
that we may not know the full structure of f(·), for example if a patho-
gen is new and many key biological and societal parameters remain 
uncertain. Crucially, we may not know the effect that large-scale policy 
(z) will have on behavior (x(z)) or how this behavior change will affect 
infection rates (f(·)).

Alternatively, one can differentiate Equation 1 with respect to the 
kth policy zk:

∑y
z

y
x

x

z
∂
∂

=
∂
∂

∂

∂
(2)

k j

N

j

j

k=1

which describes how changes in the policy affects infections through 
all N potential pathways mediated by x1,...,xN. Usefully, for a fixed pop-
ulation observed over time, empirically estimating an average value 
of the local derivative on the left-hand-side in Equation 2 does not 
depend on explicit knowledge of w. If we can observe y and z directly 
and estimate changes over time y

z
∂

∂ k
 with data, then intermediate vari-

ables x also need not be observed nor modeled. The reduced-form 
econometric approach5,14 thus attempts to measure y

z
∂

∂ k
 directly, exploit-

ing exogenous variation in policies z.

Model. Active infections grow exponentially during the initial phase of 
an epidemic, when the proportion of immune individuals in a popula-
tion is near zero. Assuming a simple Susceptible-Infected-Recovered 
(SIR) disease model (e.g., ref. [11]), the growth in infections during the 
early period is

dI
dt

S β γ I β γ I= ( − ) = ( − ) , (3)t
t t S t→1t

where It is the number of infected individuals at time t, β is the trans-
mission rate (new infections per day per infected individual), γ is the 
removal rate (proportion of infected individuals recovering or dying 
each day) and S is the fraction of the population susceptible to the dis-
ease. The second equality holds in the limit S → 1, which describes the 
current conditions during the beginning of the COVID-19 pandemic. 
The solution to this ordinary differential equation is the exponential 
function

I

I
e= , (4)

t

t

g t t⋅( − )2 12

1

where It1 is the initial condition. Taking the natural logarithm and rear-
ranging, we have

I I g t tlog( ) − log( ) = ⋅ ( − ). (5)t t 2 12 1

Anti-contagion policies are designed to alter g, through changes to 
β, by reducing contact between susceptible and infected individuals. 
Holding the time-step between observations fixed at one day (t2−t1 = 1),  
we thus model g as a time-varying outcome that is a linear function of 
a time-varying policy

g I I θ θ policy ε= log( ) − log( ) = + ⋅ + , (6)t t t t t−1 0

where θ0 is the average growth rate absent policy, policyt is a binary 
variable describing whether a policy is deployed at time t, and θ is the 
average effect of the policy on growth rate g over all periods subsequent 

to the policy’s introduction, thereby encompassing any lagged effects 
of policies. εt is a mean-zero disturbance term that captures inter-period 
changes not described by policyt. Using this approach, infections each 
day are treated as the initial conditions for integrating Equation 4 
through to the following day.

We compute the first differences log(It)−log(It−1) using active infec-
tions where they are available, otherwise we use cumulative infections, 
noting that they are almost identical during this early period (except 
in China, where we use active infections). We then match these data to 
policy variables that we construct using the novel data sets we assemble 
and apply a reduced-form approach to estimate a version of Equation 6, 
although the actual expression has additional terms detailed below.

Estimation. To estimate a multi-variable version of Equation 6, we 
estimate a separate regression for each country c. Observations are for 
subnational units indexed by i observed for each day t. Because not all 
localities began testing for COVID-19 on the same date, these samples 
are unbalanced panels. To ensure data quality, we restrict our analysis 
to localities after they have reported at least ten cumulative infections.

A necessary condition for unbiased estimates is that the timing of 
policy deployment is independent of natural infection growth rates14, a 
mathematical condition that should be true in the context of a new epi-
demic. In established epidemiological models, including the standard 
SIR model above, early rates of infection within a susceptible population 
are characterized by constant exponential growth. This phenomenon is 
well understood theoretically13,27,46, has been repeatedly documented in 
past epidemics28,29,47 as well as the current COVID-19 pandemic11,12, and 
implies constant infection growth rates in the absence of policy inter-
vention. Thus, we treat changes in infection growth rates as condition-
ally independent of policy deployments since the correlation between 
a constant variable and any other variable is zero in expectation.

We estimate a multiple regression version of Equation 6 using 
ordinary least squares. We include a vector of subnational unit-fixed 
effects θ0 (i.e., varying intercepts captured as coefficients to dummy 
variables) to account for all time-invariant factors that affect the 
local growth rate of infections, such as differences in demographics, 
socio-economic status, culture, and health systems5. We include a vec-
tor of day-of-week-fixed effects δ to account for weekly patterns in the 
growth rate of infections that are common across locations within a 
country, however, in China, we omit day-of-week effects because we 
find no evidence they are present in the data – perhaps due to the fact 
that the outbreak of COVID-19 began during a national holiday and 
workers never returned to work. We also include a separate single-day 
dummy variable each time there is an abrupt change in the availability 
of COVID-19 testing or a change in the procedure to diagnose posi-
tive cases. Such changes generally manifest as a discontinuous jump 
in infections and a re-scaling of subsequent infection rates (e.g., See 
China in Figure 1), effects that are flexibly absorbed by a single-day 
dummy variable because the dependent variable is the first-difference 
of the logarithm of infections. We denote the vector of these testing 
dummies μ.

Lastly, we include a vector of Pc country-specific policy variables for 
each location and day. These policy variables take on values between 
zero and one (inclusive) where zero indicates no policy action and 
one indicates a policy is fully enacted. In cases where a policy variable 
captures the effects of collections of policies (e.g., museum closures 
and library closures), a policy variable is computed for each, then they 
are averaged, so the coefficient on this type of variable is interpreted 
as the effect if all policies in the collection are fully enacted. There are 
also instances where multiple policies are deployed on the same date in 
numerous locations, in which case we group policies that have similar 
objectives (e.g., suspension of transit and travel ban, or cancelling of 
events and no gathering) and keep other policies separate (i.e., busi-
ness closure, school closure). The grouping of policies is useful for 
reducing the number of estimated parameters in our limited sample 

Article

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



of data, allowing us to examine the impact of subsets of policies (e.g. 
Fig. 2c). However, policy grouping does not have a material impact 
on the estimated effect of all policies combined nor on the effect of 
actual policies, which we demonstrate by estimating a regression 
model where no policies are grouped and these values are recalculated  
(Supplementary Table 4, Extended Data Fig. 6).

In some cases (for Italy and the US), policy data is available at a 
more spatially granular level than infection data (e.g., city policies 
and state-level infections in the US). In these cases, we code binary 
policy variables at the more granular level and use population-weights 
to aggregate them to the level of the infection data. Thus, policy vari-
ables may take on continuous values between zero and one, with a 
value of one indicating that the policy is fully enacted for the entire 
population. Given the limited quantity of data currently available, we 
use a parsimonious model that assumes the effects of policies on infec-
tion growth rates are approximately linear and additively separable. 
However, future work that possesses more data may be able to identify 
important nonlinearities or interactions between policies.

For each country, our general multiple regression model is thus

( )∑

g I I

θ δ μ θ policy ε

= log( ) − log( )

= + + + ⋅ +
(7)

cit cit ci t

ci ct cit
p

P

cp pcit cit

, −1

0,
=1

c

where observations are indexed by country c, subnational unit i, and 
day t. The parameters of interest are the country-by-policy specific 
coefficients θcp. We display the estimated residuals εcit in Extended Data 
Fig. 10, which are mean zero but not strictly normal (normality is not 
a requirement of our modeling and inference strategy), and we estimate 
uncertainty over all parameters by calculating our standard errors 
robust to error clustering at the day level14. This approach allows the 
covariance in εcit across different locations within a country, observed 
on the same day, to be nonzero. Such clustering is important in this 
context because idiosyncratic events within a country, such as a holiday 
or a backlog in testing laboratories, could generate nonuniform 
country-wide changes in infection growth for individual days not explic-
itly captured in our model. Thus, this approach non-parametrically 
accounts for both arbitrary forms of spatial auto-correlation or sys-
tematic misreporting in regions of a country on any given day (we note 
that it generates larger estimates for uncertainty than clustering by i). 
When we report the effect of all policies combined (e.g., Figure 2b) we 
are reporting the sum of coefficient estimates for all policies θ∑p

P
cp=1

c , 
accounting for the covariance of errors in these estimates when com-
puting the uncertainty of this sum.

Note that our estimates of θ and θ0 in Equation 7 are robust to sys-
tematic under-reporting of infections, a major concern in the ongo-
ing pandemic, due to the construction of our dependent variable. 
This remains true even if different localities have different rates of 
under-reporting, so long as the rate of under-reporting is relatively 
constant. To see this, note that if each locality i has a medical system 
that reports only a fraction ψi of infections such that we observe 
∼
I ψ I=it i it rather an actual infections Iit, then the left-hand-side of Equa-
tion 7 will be

∼ ∼
I I ψ I ψ Ilog( ) − log( ) = log( ) − log( )it i t i it i i t, −1 , −1

ψ ψ I I=log( ) − log( ) + log( ) − log( )i i it i t, −1

I I g=log( ) − log( ) =it i t t, −1

and is therefore unaffected by location-specific and time-invariant 
under-reporting. Thus systematic under-reporting does not affect our 
estimates for the effects of policy θ. As discussed above, potential biases 

associated with non-systematic under-reporting resulting from docu-
mented changes in testing regimes over space and time are absorbed 
by region-day specific dummies μ.

However, if the rate of under-reporting within a locality is changing 
day-to-day, this could bias infection growth rates. We estimate the 
magnitude of this bias (see Extended Data Fig. 2), and verify that it is 
quantitatively small. Specifically, if I ψ I=it it it

∼  where ψit changes 
day-to-day, then

I I ψ ψ glog( ) − log( ) = log( ) − log( ) + (8)it i t it i t t, −1 , −1
∼ ∼

where log(ψit)−log(ψi,t−1) is the day-over-day growth rate of the 
case-detection probability. Disease surveillance has evolved slowly in 
some locations as governments gradually expand testing, which would 
cause ψit to change over time, but these changes in testing capacity do 
not appear to significantly alter our estimates of infection growth rates. 
In Extended Data Fig. 2, we show one set of epidemiological estimates23 
for log(ψit)−log(ψi, t−1). Despite random day-to-day variations, which 
do not cause systematic biases in our point estimates, the mean of 
log(ψit)−log(ψi,t−1) is consistently small across the different countries: 
0.05 in China, 0.064 in Iran, 0.019 in South Korea, − 0.058 in France, 
0.031 in Italy, and 0.049 in the US. The average of these estimates is 
0.026, potentially accounting for 7.3% of our global average estimate for 
the no-policy infection growth rate (0.36). These estimates of log(ψit)−
log(ψi, t−1) also do not display strong temporal trends, alleviating con-
cerns that time-varying under-reporting generates sizable biases in 
our estimated effects of anti-contagion policies.

Transient dynamics. In China, we are able to examine the transient re-
sponse of infection growth rates following policy deployment because 
only three policies were deployed early in a seven-week sample period 
during which we observe many cities simultaneously. This provides us 
with sufficient data to estimate the temporal structure of policy effects 
without imposing assumptions regarding this structure. To do this, we 
estimate a distributed-lag model that encodes policy parameters using 
weekly lags based on the date that each policy is first implemented in 
locality i. This means the effect of a policy implemented one week ago 
is allowed to differ arbitrarily from the effect of that same policy in 
the following week, etc. These effects are then estimated simultane-
ously and are displayed in Fig. 2 (also Supplementary Table 3). Such 
a distributed lag approach did not provide statistically meaningful 
insight in other countries using currently available data because there 
were fewer administrative units and shorter periods of observation (i.e. 
smaller samples), and more policies (i.e. more parameters to estimate) 
in all other countries. Future work may be able to successfully explore 
these dynamics outside of China.

As a robustness check, we examine whether excluding the transient 
response from the estimated effects of policy substantially alters our 
results. We do this by estimating a “fixed lag” model, where we assume 
that policies cannot influence infection growth rates for L days, recod-
ing a policy variable at time t as zero if a policy was implemented fewer 
than L days before t. We re-estimate Equation 7 for each value of L and 
present results in Extended Data Fig. 5 and Supplementary Table 5.

Alternative disease models. Our main empirical specification is mo-
tivated with an SIR model of disease contagion, which assumes zero 
latent period between exposure to COVID-19 and infectiousness. If 
we relax this assumption to allow for a latent period of infection, as in 
a Susceptible-Exposed-Infected-Recovered (SEIR) model, the growth 
of the outbreak is only asymptotically exponential11. Nonetheless, we 
demonstrate that SEIR dynamics have only a minor potential impact 
on the coefficients recovered by using our empirical approach in this 
context. In Extended Data Figs. 8 and 9 we present results from a simula-
tion exercise which uses Equations 9–11, along with a generalization to 
the SEIR model11 to generate synthetic outbreaks (see Supplementary 
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Methods Section 2). We use these simulated data to test the ability of our 
statistical model (Equation 7) to recover both the unimpeded growth 
rate (Extended Data Fig. 8) as well as the impact of simulated policies on 
growth rates (Extended Data Fig. 9) when applied to data generated by 
SIR or SEIR dynamics over a wide range of epidemiological conditions.

Projections
Daily growth rates of infections. To estimate the instantaneous daily 
growth rate of infections if policies were removed, we obtain fitted 
values from Equation 7 and compute a predicted value for the depend-
ent variable when all Pc policy variables are set to zero. Thus, these 
estimated growth rates ĝ cit

no policy capture the effect of all locality-specific 
factors on the growth rate of infections (e.g., demographics), 
day-of-week-effects, and adjustments based on the way in which infec-
tion cases are reported. This counterfactual does not account for 
changes in information that are triggered by policy deployment, since 
those should be considered a pathway through which policies affect 
outcomes, as discussed in the main text. Additionally, the “no-policy” 
counterfactual does not model previously unobserved changes in 
behavior that might occur if fundamentally new behaviors emerge 
even in the absence of government intervention. When we report an 
average no-policy growth rate of infections (Figure 2a), it is the average 
value of these predictions for all observations in the original sample. 
Location-and-day specific counterfactual predictions ( )ĝ cit

no policy ,  
accounting for the covariance of errors in estimated parameters, are 
shown as red markers in Figure 3.

Cumulative infections. To provide a sense of scale for the estimated  
cumulative benefits of effects shown in Figure  3, we link our 
reduced-form empirical estimates to the key structures in a simple 
SIR system and simulate this dynamical system over the course of our 
sample. The system is defined as the following:

dS
dt

β S I= − (9)t
t t t

dI
dt

β S γ I= ( − ) (10)t
t t t

dR
dt

γI= (11)t
t

where St is the susceptible population and Rt is the removed population. 
Here βt is a time-evolving parameter, determined via our empirical 
estimates as described below. Accounting for changes in S becomes 
increasingly important as the size of cumulative infections (It + Rt) 
becomes a substantial fraction of the local subnational population, 
which occurs in some no-policy scenarios. Our reduced-form analysis 
provides estimates for the growth rate of active infections g( ˆ) for each 
locality and day, in a regime where St ≈ 1. Thus we know

dI
dt

I g β γ/ | = ˆ = − (12)t
t S t t≈1

but we do not know the values of either of the two right-hand-side terms, 
which are required to simulate Equations 9–11. To estimate γ, we note 
that the left-hand-side term of Equation 11 is

dR
dt

d
dt

≈ (cumulative_recoveries + cumulative_deaths)t

which we can observe in our data for China and South Korea. Comput-
ing first differences in these two variables (to differentiate with respect 
to time), summing them, and then dividing by active cases gives us 
estimates of γ (medians: China = 0.11, Korea = 0.05). These values differ 

slightly from the classical SIR interpretation of γ because in the public 
data we are able to obtain, individuals are coded as “recovered” when 
they no longer test positive for COVID-19, whereas in the classical SIR 
model this occurs when they are no longer infectious. We adopt the 
average of these two medians, setting γ =.08. We use medians rather 
than simple averages because low values for I induce a long right-tail 
in daily estimates of γ and medians are less vulnerable to this distor-
tion. We then use our empirically-based reduced-form estimates of ĝ 
(both with and without policy) combined with Equations 9–11 to pro-
ject total cumulative cases in all countries, shown in Figure 4. We 
simulate infections and cases for each administrative unit in our sam-
ple beginning on the first day for which we observe 10 or more cases 
(for that unit) using a time-step of 4 hours. Because we observe con-
firmed cases rather than total infections, we seed each simulation by 
adjusting observed It on the first day using country-specific estimates 
of case detection rates. We adjust existing estimates of case 
under-reporting23 to further account for asymptomatic infections 
assuming an infection-fatality ratio of 0.075%25. We assume Rt = 0 on 
the first day. To maintain consistency with the reported data, we report 
our output in confirmed cases by multiplying our simulated It + Rt 
values by the aforementioned proportion of infections confirmed. 
We estimate uncertainty by resampling from the estimated 
variance-covariance matrix of all regression parameters. In Extended 
Data Fig. 7, we show sensitivity of this simulation to the estimated value 
of γ as well as to the use of a Susceptible-Exposed-Infected-Recovered 
(SEIR) framework. In Supplementary Table 6, we show sensitivity of 
this simulation to the assumed infection-fatality ratio (see Supplemen-
tary Methods Section 1).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated during and/or analysed during the current 
study are available at https://github.com/bolliger32/gpl-covid. Future 
updates and/or extensions to data or code will be listed at http://www.
globalpolicy.science/covid19.

Code availability
For easier replication, we have created a CodeOcean “capsule” – 
which contains a pre-built computing environment in addition to 
the source code and data. This is available at https://codeocean.com/ 
capsule/1887579/tree/v1. Future updates and/or extensions to data or 
code will be listed at http://www.globalpolicy.science/covid19.
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Extended Data Fig. 1 | Validating disaggregated epidemiological data 
against aggregated data from the Johns Hopkins Center for Systems 
Science and Engineering. Comparison of cumulative confirmed cases from a 
subset of regions in our collated epidemiological dataset to the same statistics 
from the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by 
the Johns Hopkins Center for Systems Science and Engineering (JHU CSSE)48. 
We conduct this comparison for Chinese provinces and South Korea, where the 

data we collect are from local administrative units that are more spatially 
granular than the data in the JHU CSSE database. a, In China, we aggregate our 
city-level data to the province level, and b, in Korea we aggregate province-level 
data up to the country level. Small discrepancies, especially in later periods of 
the outbreak, are generally due to imported cases (international or domestic) 
that are present in national statistics but which we do not assign to particular 
cities (in China) or provinces (in Korea).
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Extended Data Fig. 2 | Estimated trends in case detection over time within 
each country. Systematic trends in case detection may potentially bias 
estimates of no-policy infection growth rates (see Equation 8). We estimate the 
potential magnitude of this bias using data from the Centre for Mathematical 
Modelling of Infectious Diseases23 Markers indicate daily first-differences in 
the logarithm of the fraction of estimated symptomatic cases reported for 
each country over time. The average value over time (solid line and value 

denoted in panel title) is the average growth rate of case detection, equal to  
the magnitude of the potential bias. For example, in the main text we estimate 
that the infection growth rate in the United States is 0.29 (Figure 2a), of which 
growth in case detection might contribute 0.049 (this figure). Sample sizes  
are 75 in China, 41 in Iran, 40 in South Korea, 29 in France, 40 in Italy, and 32 in 
the US.
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Extended Data Fig. 3 | Robustness of the estimated no-policy growth rate of 
infections and the combined effect of policies to withholding blocks of 
data from entire regions. For each country, we re-estimated Eq. 7 using real 
data k times, each time withholding one of the k first-level administrative 
regions (“Adm1,” i.e. state or province) in that country. Each gray circle is either 
(a) the estimated no-policy growth rate or (b) the total effect of all policies 
combined, from one of these k regressions. Red and blue circles show estimates 
from the full sample, identical to results presented in panels A and B of Figure 2, 

respectively. For each country panel, if a single region is influential, the 
estimated value when it is withheld from the sample will appear as an outlier. 
Some regions that appear influential are highlighted with an open pink circle. 
As in Figure 2b of the main text, we estimate a distributed lag model for China 
and display each of the estimated weekly lag effects (red circle is the same 
“without Hubei” sample for lags). The full sample includes 3,684 observations 
in China, 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in France, and 1,238 
in the US.
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Extended Data Fig. 4 | Robustness of the estimated effects of individual 
policies to withholding blocks of data from entire regions. Same as 
Extended Data Figure 3, but for individual policies (analogous to Figure 2c in 
the main text). In cases where two regions are influential, a second region is 

highlighted with an open green circle. The full sample includes 3,669 
observations in China, 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in 
France, and 1,238 in the US.
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Extended Data Fig. 5 | Evidence supporting models where policies affect 
infection growth rates in the days following deployment. Existing evidence 
has not demonstrated whether policies should affect infection growth rates in 
the days immediately following deployment. It is therefore not clear ex ante 
whether the policy variables in Eq. 7 should be encoded as “on” immediately 
following a policy deployment. We estimate “fixed-lag” models in which a  
fixed delay between a policy’s deployment and its effect is assumed 
(see Supplementary Methods Section 3). If a delay model is more consistent 
with real world infection dynamics, these fixed lag models should recover 
larger estimates for the impact of policies and exhibit better model fit.  

a, R-squared values associated with fixed-lag lengths varying from zero to 
fifteen days. Center values represent the R squared value in our sample, 
whiskers are 95% CI computed through resampling with replacement. 
In-sample fit generally declines or remains unchanged if policies are assumed 
to have a delay longer than four days. b, Estimated effects for no lag (the model 
reported in the main text) and for fixed-lags between one and five days. Center 
values represent the point estimate, error bars are 95% CI. Estimates generally 
are unchanged or shrink towards zero (e.g. Home isolation in Iran), consistent 
with mis-coding of post-policy days as no-policy days. The sample size is 595 in 
South Korea, 2,898 in Italy, 548 in Iran, 270 in France, and 1,238 in the US.
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Extended Data Fig. 6 | Estimated infection or hospitalization growth rates 
with actual anti-contagion policies and in a “no policy” counterfactual 
scenario. a, The estimated daily growth rates of active (China, South Korea) or 
cumulative (all others) infections based on the observed timing of all policy 
deployments within each subnational unit (blue) and in a scenario where no 
policies were deployed (red). Identical to Figure 3 in the main text, but using an 
alternative disaggregated encoding of policies that does not group any 
policies into policy packages. The sample size is 3,669 in China, 595 in South 
Korea, 2,898 in Italy, 548 in Iran, 270 in France, and 1,238 in the US. b, Same as 
Figure 3 in the main text, but Eq. 7 is implemented for a single example 

administrative unit, Wuhan, China. The sample size is 46 observations. c, Same 
as Figure 3 in the main text, but using hospitalization data from France rather 
than cumulative cases (the French government stopped reporting cumulative 
cases after March 25, 2020). The sample size is 424 observations. For all panels, 
the difference between the with- and no-policy predictions is our estimated 
effect of actual anti-contagion policies on the growth rate of infections  
(or hospitalizations). The markers are daily estimates for each subnational 
administrative unit (vertical lines are 95% confidence intervals). Black  
circles are observed changes in log(infections) (or diamonds for 
log(hospitalizations)), averaged across observed administrative units.
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Extended Data Fig. 7 | Sensitivity of estimated averted/delayed infections 
to the choice of γ and σ in an SIR/SEIR framework. This figure displays the 
sensitivity of total averted/delayed cases presented in Figure 4 of the main text 
to alternative modeling assumptions. We compute total cases across the 
respective final days in our samples for the six countries presented in our 
analysis. The figure displays how these totals vary with eight values of γ  
(0.05-0.4) and four values of σ (0.2, 0.33, 0.5, ∞), where the final value of σ (∞) 
corresponds to the SIR model. a, The simulated total number of infections 
under no policy. b, Same, but using actual policies. c, The difference between 

(a) and (b), which is the total number of averted/delayed infections. d, Same as 
(c), but on a logarithmic scale similar to Figure 4 in the main text (a-c are on a 
linear scale, trimmed to show details). Figure 4 in the main text uses γ = 0.079, 
which we calculate using empirical recovery/death rates in countries where we 
observe them (China and South Korea, see Methods). If we assume a 14-day 
delay between infected individuals becoming non-infectious and being 
reported as “recovered” in the data, we would calculate γ = 0.18. Figure 4 in the 
main text assumes σ = ∞.
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Extended Data Fig. 8 | Simulating reduced-form estimates for the no-policy 
growth rate of infections for different population regimes and disease 
dynamics. We examine the performance of reduced form econometric 
estimators through simulations in which different underlying disease 
dynamics are assumed (see SI Section 3). Each histogram shows the 
distribution of econometrically estimated values across 1,000 simulated 
outbreaks. Estimates are for the no-policy infection growth rate (analogous to 
Figure 2a) when three different policies are deployed at random moments in 
time. The black line shows the correct value imposed on the simulation and the 
red histogram shows the distribution of estimates using the regression in Eq. 7, 
applied to data output from the simulation. The grey dashed line shows the 
mean of this distribution. The 12 subpanels describe the results when various 
values are assigned to the mean infectious period (γ−1) and mean latency period 

(σ−1) of the disease. “σ = ∞” is equivalent to SIR disease dynamics. In each panel, 
Smin is the minimum susceptible fraction observed across all 1,000 45-day 
simulations shown in each panel. In the real datasets used in the main text, after 
correcting for country-specific under-reporting, Smin across all units analyzed 
is 0.72 and 95% of the analyzed units finish with Smin > 0.91. Bias refers to the 
distance between the dashed grey and black line as a percentage of the true 
value. a, Simulations in near-ideal data conditions in which we observe active 
infections within a large population (such that the susceptible fraction of the 
population remains high during the sample period, similar to those in our data 
for Chongqing, China). b, Simulations in a non-ideal data scenario where we are 
only able to observe cumulative infections in a small population (similar to 
those in our sample for Cremona, Italy).
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Extended Data Fig. 9 | Simulating reduced form estimates for 
anti-contagion policy effects for different population regimes and 
assumed disease dynamics. Same as Extended Data Figure 8, but estimates 

are for the combined effect of three different policies (analogous to Figure 2b) 
that are deployed at random moments in time.
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Extended Data Fig. 10 | Regression residuals for the growth rates of 
COVID-19 by country. These plots show the estimated residuals from 
Equation 7 for each country-specific econometric model. Histograms (left) 
show the estimated unconditional probability density function. Quantile plots 

(right) show quantiles of the cumulative density function (y-axis) plotted 
against the same quantiles for a Normal Distribution. For additional details, see 
Fig. 3 and the Econometric Analysis section of Methods.
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